Úlohy: 181–200 / 239

181. Sestrojte lichoběžník

Je dán lichoběžník ABCD (AB||CD):

|AB| = 7 cm

|BC| = 3,50 cm

|CD| = 4 cm

A velikost úhlu ABC = 60°

Proveďte náčrt, popis konstrukce a sestrojte lichoběžník ABCD.
Řešení
Matematická úloha – Sestrojte lichoběžník

182. Smíchání roztoků

Vypočtěte, v jakém poměru je třeba smíchat roztoky koncentrace 82 % a 54 %, abychom získali 76 % roztok.
Řešení
Roztoky je třeba smíchat v poměru 11:3.
Matematická úloha – Smíchání roztoků

183. Řazení vagónů

Vypočítejte, kolika způsoby můžeme seřadit 5 vagonů, když ve třech vagonech je písek a ve dvou je cement.
Řešení
Vagóny můžeme seřadit 10 způsoby.
Matematická úloha – Řazení vagónů

184. Objem krabice

Krabice má výšku 55 cm a šířku 40 cm. Objem krabice je 180 litrů.

Vypočtěte
a)   a na dvě desetinná místa zapište, kolik cm měří délka krabice,
b)   kapacitu krabice v cm3.
Řešení
a)   Délka krabice je 81,82 cm.
b)   Objem krabice je 180 000 cm3
Matematická úloha – Objem krabice

185. Směsi bonbonů

Do kolekce jsou smíchány dva druhy bonbónů. Kilogram prvního druhu stojí 360 Kč, kilogram druhého druhu stojí 540 Kč. Oba druhy jsou ve směsi zastoupeny v poměru 4:6.

Vypočtěte, jaká je cena jednoho kilogramu směsi.
Řešení
Cena jednoho kilogramu směsi je 468 Kč.
Matematická úloha – Směsi bonbonů

186. Zvětšení kruhu

Kruh 1 má poloměr a. Kruh 2 má poloměr dvakrát větší.

Vypočtěte, kolikrát větší má kruh 2 větší než kruh 1:
a)   průměr.
b)   obvod,
c)   obsah.
Řešení
a)   Kruh 2 má 2krát větší průměr než kruh 1.
b)   Kruh 2 má 2krát větší obvod než kruh 1.
c)   Kruh 2 má 4krát větší obsah než kruh 1.
Matematická úloha – Zvětšení kruhu

187. Objem jehlanu

Je dán pravidelný čtyřbokého jehlanu. Výška jehlanu je 30 cm a stěnová výška je 50 cm.

Vypočtěte v dm3 objem jehlanu.
Řešení
Objem jehlanu je 64 dm3.
Matematická úloha – Objem jehlanu

188. Převoz zlatých cihel

Je potřeba převézt zlaté cihly o rozměrech 20 × 15 × 8 cm autem, které má nosnost 3,5 t.

Hustota zlata je 19,3 .

Vypočtěte, kolik zlatých cihel auto uveze.
Řešení
Auto uveze 75 zlatých cihel.
Matematická úloha – Převoz zlatých cihel

189. V železářství

V železářství prodávali 1 kg hřebíků za 400 Kč a 1 kg vrutů za 800 Kč. Celkem prodali 5 kg a utržili 3 200 Kč.

Vypočtěte, kolik kg hřebíků a kolik kg vrutů v železářství prodali.
Řešení
V železářství prodali v 2 kg hřebíků a 3 kg vrutů.
Matematická úloha – V železářství

190. Místa v divadle

Patrik, Pavel, Alena a Renata šli do divadla.

Vypočtěte, kolika různými způsoby se mohou rozesadit na čtyři sedadla, pokud Renata chce sedět vedle Pavla?
Řešení
Můžou se rozesadit 12 způsoby.
Matematická úloha – Místa v divadle

191. V divadle

V divadle je 60 % dospělých a zbytek dětí. Z dospělých je žen a 18 mužů.

Vypočtěte, kolik dětí je v divadle.
Řešení
V divadle je 20 dětí.
Matematická úloha – V divadle

192. Zahradnické sázení

Zahradnice měly zasadit 200 sazenic. Lenka zasadila o 20 % více než Dana. Eva zasadila o 40 více než Dana. Zuzka zasadila toho co Dana.

Vypočtěte, kolik sazenic zasadila Dana.
Řešení
Dana zasadila 40 sazenic.
Matematická úloha – Zahradnické sázení

193. Výlet na kole

Olga jela na projížďku na kole. Za hodinu se za ní po stejné trase vypravil bratr na motorce stálou rychlostí 60 km/h a dojel ji za hodiny.

Určete:
a)   v km délku trasy, kterou Olga ujela, než ji bratr dojel,
b)   v kilometrech za hodinu, jakou průměrnou rychlostí Olga jela.
Řešení
a)   Olga ujela 30 km.
b)   Olga jela rychlostí 20 km/h.
Matematická úloha – Výlet na kole

194. Stavba zdi

Zedník s učedníkem by společně postavili zeď za 15 hodin. Učedník sám by zeď postavil za 60 hodin.

Vypočtěte,
a)   za kolik hodin by zeď stavěl sám zedník,
b)   o kolik procent se zkrátí doba stavby zdi při zapojení učedníka oproti době práce samotného zedníka.
Řešení
a)   Zedník sám by stavěl zeď 20 hodin.
b)   Doba se zkrátí o 25 %.
Matematická úloha – Stavba zdi

195. Dvě čerpadla plní bazén

První čerpadlo naplní samostatně bazén za 7 hodin, druhé za 5 hodin.

Vypočtěte, za jak dlouho bude bazén naplněn oběma čerpadly. (Zapište v hodinách a minutách.)
Řešení
Bazén bude naplněn za 2 hodiny a 55 minut.
Matematická úloha – Dvě čerpadla plní bazén

196. Tříciferná čísla

a)   Vypočtěte, kolik je tříciferných čísel, která mají ciferný součet 6?
b)   Určete v základním tvaru poměr počtu takto vytvořených sudých a lichých čísel.
Řešení
a)   Počet čísel je 21.
b)   Poměr sudých a lichých čísel je 4:3.
Matematická úloha – Tříciferná čísla

197. Vyřešte v R rovnici

Vyřešte v R rovnice
a)   
b)   
c)   
d)   
Řešení
a)   x = 2
b)   x = 7
c)   x = 6
d)   x = -3
Matematická úloha – Vyřešte v R rovnici

198. Úhlopříčka obrazovky

Úhlopříčka televizní obrazovky je 84 cm a výška je 40 cm.

Vypočtěte šířku obrazovky, zaokrouhlete na dvě desetinná místa.
Řešení
a = 73,86 cm
Matematická úloha – Úhlopříčka obrazovky

199. Setkání kamarádů

Kamarádi Petr a Martin bydlí ve vzdálenosti 13 kilometrů od sebe. Petr jel za Martinem na kole průměrnou rychlostí 18 km/hod. a Martin mu ve stejném okamžiku vyjel naproti na koloběžce. Za půl hodiny po vyjetí se setkali.

Vypočtěte:
a)   v kilometrech za hodinu, jakou průměrnou rychlosti jel Martin na koloběžce,
b)   v kilometrech, jakou vzdálenost ujel Martin, než se setkal s Petrem.
Řešení
a)   Martin jel rychlostí 8 km/hod.
b)   Martin ujel 4 km.
Matematická úloha – Setkání kamarádů

200. Pastelky

V penálu je 5 pastelek: modrá, žlutá, zelená, červená a fialová.

Vypočtěte,
a)   kolik je různých možností uložení v penálu,
b)   kolik je různých možností uložení v penálu za předpokladu, že modrá a žlutá musí být (v tomto pořadí) vždy vedle sebe.
Řešení
a)   Je 120 možností.
b)   Je 24 možností.
Matematická úloha – Pastelky