Úlohy: 1–20 / 239

1. Hrabání sněhu před školou

Pan školník měl shrabat sníh v prostoru před školou. První hodinu shrabal 40 %, 75 % polovinu zbytku a třetí hodinu shrabal zbylých 240 m2.

Vypočítejte, kolik m2 má prostor před školou.
Řešení
Celková plocha před školou je 640 m2.
Matematická úloha – Hrabání sněhu před školou

2. Natírání plotu

Tatínek s maminkou se rozhodli natřít plot. Když tatínek pracuje sám, zvládne práci za 6 hodin. Maminka by stejnou práci zvládla za 9 hodin.

Vypočítejte, kolik času jim bude trvat, než společně plot natřou. (Zapište v hodinách a minutách.)
Řešení
Tatínek a maminka společně natřou plot za 3 hodiny a 36 minut.
Matematická úloha – Natírání plotu

3. Lineární rovnice 2

Vyřešte lineární rovnice:
a)   \[ \frac{x}{3} + \frac{2x}{6} = 5 + 2x \]
b)   \[ \frac{3x}{4} - \frac{x}{2} = x + 1 \]
c)   \[ \frac{2x}{5} + 3 = \frac{4x}{10} + 6 \]
d)   \[ \frac{5x}{6} + 2 = \frac{x}{3} + 4 \]
e)   \[ \frac{3x}{8} - \frac{x}{4} = \frac{5}{2} - x \]
f)   \[ \frac{x}{2} + 1 = \frac{x}{4} + 2 \]
Řešení
a)   \[ x = -\frac{15}{4} \]
b)   \[ x = -\frac{4}{3} \]
c)   \[ \text{Rovnice nemá řešení.} \]
d)   \[ x = 4 \]
e)   \[ x = \frac{20}{9} \]
f)   \[ x = 4 \]
Matematická úloha – Lineární rovnice 2

4. Kvadratické nerovnice

Vyřešte kvadratické nerovnice:
a)   \(x^2 - 4x - 5 > 0\)
b)   \(x^2 + 3x - 10 \leq 0\)
c)   \(2x^2 - 8x \geq 0\)
d)   \(-x^2 + 5x + 14 < 0\)
e)   \(x^2 - 6x + 9 > 0\)
f)   \(2x^2 - 12x + 16 \leq 0\)
Řešení
a)   \((- \infty, -1) \cup (5, \infty)\)
b)   \(\langle -5, 2 \rangle\)
c)   \((- \infty, 0 \rangle \cup \langle 4, \infty)\)
d)   \(x \in (-\infty, -2) \cup (7, \infty)\)
e)   \((- \infty, 3) \cup (3, \infty)\)
f)   \(\langle 2, 4 \rangle\)
Matematická úloha – Kvadratické nerovnice

5. Uložené peníze

Petr si založil spořicí účet, na který vložil 50 000 Kč. Banka nabízí roční úrokovou sazbu 3 % s ročním připisováním úroků (složené úročení). Peníze nechá na účtu 5 let.

Jakou částku bude mít Petr na účtu, pokud nebude vkládat ani vybírat peníze?
Řešení
Po 5 letech bude mít Petr na účtu přibližně 57 963,70 Kč.
Matematická úloha – Uložené peníze

6. Lineární nerovnice

Vyřešte lineární nerovnice:
a)   \[ \frac{2x}{5} - 1 \geq \frac{x}{3} + \frac{4}{5} \]
b)   \[ \frac{3x + 2}{4} \leq \frac{5x - 1}{6} \]
c)   \[ 4 - \frac{x}{2} \leq 2 + \frac{3x}{4} \]
d)   \[ \frac{2x}{3} - \frac{5}{4} \geq \frac{x}{6} + \frac{1}{2} \]
e)   \[ \frac{7x + 5}{8} > \frac{3x}{4} \]
f)   \[ \frac{x - 1}{6} \leq \frac{2x + 2}{9} \]
Řešení
a)   \( x \in [27, \infty) \)
b)   \( x \in [8, \infty) \)
c)   \( x \in \left[\frac{8}{5}, \infty\right) \)
d)   \( x \in \left[\frac{7}{2}, \infty\right) \)
e)   \( x \in (-5, \infty) \)
f)   \( x \in [-7, \infty) \)
Matematická úloha – Lineární nerovnice

7. Kružnice opsaná a vepsaná

Je dán čtverec o obsahu 36 cm2.

Vypočítejte v centimetrech poloměr
a)   kružnice vepsaná,
b)   kružnice opsané.
Řešení
a)   Poloměr kružnice vepsané je 3 cm.
b)   Poloměr kružnice opsané je přibližně 4,24 cm.
Matematická úloha – Kružnice opsaná a vepsaná

8. Koupě auta

Petr si chce za dva roky koupit nové auto. Ví, že cena auta bude 600 000 Kč. Plánuje si peníze odkládat na spořicí účet s ročním úrokem 4 %, který se připisuje na konci každého roku.

Vypočítejte, kolik musí Petr vložit na tento účet dnes, aby měl za dva roky dostatek peněz na nákup auta.
Řešení
Petr musí vložit na účet částku 554 705 Kč.
Matematická úloha – Koupě auta

9. Plnění zásobníku vodou

Zásobník na vodu má tvar válce o poloměru základny 50 cm a výšce ( frac{3}{pi} , ext{m} ). Aktuálně je naplněn ze 40 %. Do zásobníku začala téct voda rychlostí 1 litr za 2 sekundy.

Vypočítejte, za jak dlouho bude zásobník naplněn z 90 %. (Zapište v minutách a sekundách.)
Řešení
Zásobník bude naplněn z 90 % za 12 minut 30 sekund.
Matematická úloha – Plnění zásobníku vodou

10. Cestující ve vlaku

Vlak má dva vagóny. Kdyby šest cestujících přestoupilo z prvního vagónu do druhého, bude ve druhém vagónu přesně dvojnásobek cestujících proti těm, co zůstanou v prvním vagónu. Kdyby ale přestoupilo šest cestujících z druhého vagónu do prvního, bude cestujících v obou vagónech stejně.

Vypočítejte, kolik je cestujících:
a)   v prvním vagónu,
b)   ve druhém vagónu.
Řešení
a)   V prvním vagónu je 30 cestujících,
b)   ve druhém vagónu je 42 cestujících.
Matematická úloha – Cestující ve vlaku

11. Výlet Jany a Petra

Petr a Jana se rozhodli jít na výlet. Petr vyrazil ze svého domu pěšky rychlostí 5 km/h v 8 hodin. Jana vyjela na kole rychlostí 15 km/h, ale kvůli pozdnímu startu vyrazila až v 8 hodin a 30 minut.

Vypočítejte,
a)   V kolik hodin Jana dožene Petra,
b)   jak daleko od jejich domu se setkají.
Řešení
a)   Jana dožene Petra za 15 minut (v 8 hodin 45 minut),
b)   setkají se ve vzdálenosti 3,75 km od domu.
Matematická úloha – Výlet Jany a Petra

12. Míchání roztoku

Máme připravit 1 500 ml nového roztoku o koncentraci 40 %. K dispozici máme dva roztoky:

Roztok A s koncentrací 25 %,

Roztok B s koncentrací 50 %.

Vypočítejte, kolik ml bude v novém roztoku:
a)   roztoku A,
b)   roztoku B.
Řešení
a)   600 ml roztoku A,
b)   900 ml roztoku B.
Matematická úloha – Míchání roztoku

13. Čokolády na tábor

Vedoucí tábora kupoval dětem čokolády a utratil za ně 860 Kč.

Větší stála 45 Kč a menší 25 Kč. Menších čokolád bylo o 12 více.

Vypočítejte, kolik bylo
a)   menších čokolád,
b)   větších čokolád.
Řešení
a)   Větších čokolád bylo 8.
b)   Menších čokolád bylo 20.
Matematická úloha – Čokolády na tábor

14. Peníze Dany a Běty

Dana má o třetinu více korun než Běta. Obě dívky dohromady mají 8 400 korun.

Vypočítejte, kolik korun má:
a)   Dana,
b)   Běta.
Řešení
a)   Dana má 4 800 korun,
b)   Běta má 3 600 korun.
Matematická úloha – Peníze Dany a Běty

15. Divadelní hlediště

V divadle bylo celkem 290 míst. Vstupenka na balkon stojí 300 Kč a do přízemí 450 Kč. Na představení bylo vyprodáno a vybralo se celkem 124 500 Kč.

Vypočítejte, kolik míst bylo na balkóně.
Řešení
Na balkóně bylo 40 míst.
Matematická úloha – Divadelní hlediště

16. Průsečík lineárních funkcí

Určete průsečík grafů lineárních funkcí:
a)   \( f_1(x) = 4x - 3 \), \( f_2(x) = -x + 2 \)
b)   \( f_1(x) = 4x - 1 \), \( f_2(x) = 2x + 5 \)
c)   \( f_1(x) = 3x + 2 \), \( f_2(x) = 3x + 5 \)
d)   \( f_1(x) = -x + 4 \), \( f_2(x) = 2x - 2 \)
e)   \( f_1(x) = -10x - 14 \), \( f_2(x) = -10x - 14 \)
f)   \( f_1(x) = x - 3 \), \( f_2(x) = -2x + 1 \)
g)   \( f_1(x) = -3x + 6 \), \( f_2(x) = x + 2 \)
h)   \( f_1(x) = 2x - 4 \), \( f_2(x) = -x + 5 \)
Řešení
a)   [1, 1]
b)   [3, 11]
c)   nemá řešení
d)   [2, 2]
e)   nekonečně mnoho řešení
f)   [ \(\frac{4}{3}\), \(-\frac{5}{3}\) ]
g)   [1, 3]
h)   [3, 2]
Matematická úloha – Průsečík lineárních funkcí

17. Průsečíky s osami

Vypočítejte průsečíky s osou \(x\) a osou \(y\) u grafů následujících funkcí.
a)   \( y = 2x - 6 \)
b)   \( y = -3x + 9 \)
c)   \( y = \frac{1}{2}x - 4 \)
d)   \( y = -5x + 15 \)
e)   \( y = 4x + 8 \)
f)   \( y = 7x \)
g)   \( y = 5 \)
h)   \( y = -2x + 10 \)
Řešení
a)   \( P_x = [3, 0]; P_y = [0, -6]; \)
b)   \( P_x = [3, 0]; P_y = [0, 9]; \)
c)   \( P_x = [8, 0]; P_y = [0, -4]; \)
d)   \( P_x = [3, 0]; P_y = [0, 15]; \)
e)   \( P_x = [-2, 0]; P_y = [0, 8]; \)
f)   \( P_x = [0, 0]; P_y = [0, 0]; \)
g)   \( P_{x} \text{ neexistuje}; P_y = [0, 5]; \)
h)   \( P_x = [5, 0]; P_y = [0, 10]; \)
Matematická úloha – Průsečíky s osami

18. Přečtená kniha

Adéla plánovala přečíst knihu za 6 dní. Nakonec ji ale přečetla za 5 dní, protože každý den přečetla o 4 víc, než plánovala.

Vypočítejte, kolik má kniha stran.
Řešení
Kniha má 120 stran.
Matematická úloha – Přečtená kniha

19. Nákup čokolády

Velká čokoláda stojí o třetinu více než malá čokoláda. Dvě velké a tři malé čokolády stojí 255 korun. Vedoucí koupili dětem na tábor o 10 více malých čokolád než velkých čokolád a zaplatili za ně celkem 1 710 korun.

Vypočítejte:
a)   kolik stála malá čokoláda,
b)   kolik stála velká čokoláda,
c)   kolik vedoucí koupili malých čokolád,
d)   kolik vedoucí koupili velkých čokolád.
Řešení
a)   Malá čokoláda stojí 45 korun.
b)   Velká čokoláda stojí 60 korun.
c)   Vedoucí koupili 12 velkých čokolád.
d)   Vedoucí koupili 22 malých čokolád.
Matematická úloha – Nákup čokolády

20. Limonády v obchodě

Limonáda se prodává v malých a velkých lahvích. Malá láhev má objem 7 dl, velká 12 dl. V obchodě je velkých láhví o 10 méně než malých a celkem v nich je 469 dl limonády.

Vypočítejte, kolik je v obchodě:
a)   malých limonád,
b)   velkých limonád.
Řešení
a)   V obchodě je 31 malých lahví
b)   V obchodě je 21 velkých lahví.
Matematická úloha – Limonády v obchodě