Úlohy: 201–220 / 239

201. Protijedoucí auta

Z měst A a B, která jsou od sebe vzdálena 50 km, vyrazila proti sobě ve stejném čase dvě auta průměrnými rychlostmi 80 km/h (z měta A) a 120 km/h (z města B).

a)   Vypočtěte, za kolik minut se potkají.
b)   Vypočtěte, kolik kilometrů od města A to bude.
Řešení
a)   Potkají se za 15 minut.
b)   Potkají se 20 km od města A.
Matematická úloha – Protijedoucí auta

202. Dvě čísla

Čísla A a B se liší o 95. Pokud od čísla A odečteme jeho dvě třetiny, dostaneme stejný výsledek, jako když k číslu B přičteme jeho tři pětiny.

a)   Větší ze dvou čísel je sudé a menší ze dvou čísel je liché.
b)   Oba získané výsledky jsou rovny číslu 40.
c)   Menší číslo je čtvrtinou čísla většího.
Řešení
a)   1
b)   1
c)   0
Matematická úloha – Dvě čísla

203. Zapište výraz

Zapište výraz n, který je:
a)   o 6 větší než dvojnásobek výrazu y,
b)   třikrát menší než čtyřnásobek výrazu y.
Řešení
a)   Výraz je 2y+6.
b)   Výraz je 4y/3.
Matematická úloha – Zapište výraz

204. Kocourkov

V kocourkovském hradním muzeu byl nalezen větší počet středověkých kanónů vyrobených z děloviny (dělovina je slitina cínu a mědi v poměru 1:9). Kocourkovští radní se dohodli, že kanóny nepotřebují, ale hodil by se jim nový zvon do kocourkovské věže. Zvony se vyrábějí ze zvonoviny, která je také slitinou cínu a mědi, ale v poměru 1:4.

a)   Vypočítejte na dvě desetinná místa, kolik děloviny bude třeba na výrobu 500 kg vážícího zvonu ze zvonoviny.
b)   Vypočítejte na dvě desetinná místa, kolik cínu bude třeba na výrobu 500 kg vážícího zvonu ze zvonoviny.
Řešení
a)   Bude třeba 444,44 kg děloviny.
b)   Bude třeba 55,56 kg cínu.
Matematická úloha – Kocourkov

205. Kružnice a tětiva

Na obrázku jsou kružnice k₁(S₁; r₁ = 9 cm) a k₂(S₂; r₂ = 5 cm). Jejich průsečíky určují společnou tětivu AB dlouhou 8 cm.

Vypočítejte v cm vzdálenost středů |S₁S₂| s přesností na dvě desetinná místa.
Dvě kružnice
Řešení
Vzdálenost středů |S₁S₂| je 11,06 cm.
Matematická úloha – Kružnice a tětiva

206. Dělení bonbónů

Jana, Martina a Zuzka si rozdělily bonbóny v poměru 3:7:5 . Martina dostala o 9 bonbonů méně než měly Jana a Zuzka spolu.

U každého z následujících tvrzení rozhodněte, zda je pravdivé, či nikoliv.
a)   Martina dostala méně bonbonů než Zuzka.
b)   Všechny spolu dostaly 135 bonbonů.
c)   Martina dostala o 16 bonbonů více než Zuzka.
d)   Zuzka dostala nejvíce bonbonů.
Řešení
a)   0
b)   1
c)   0
d)   0
Matematická úloha – Dělení bonbónů

207. Modré a červené kuličky

Máme 2 stejné modré kuličky a 2 stejné červené kuličky. Uspořádáme je všemi způsoby do řady.

Vypočtěte, kolik různých uspořádání existuje.
Řešení
Existuje 6 uspořádání.
Matematická úloha – Modré a červené kuličky

208. Kuličky různých barev

Máme 6 kuliček různých barev. Najednou vybereme dvě kuličky.

Vypočtěte, kolik existuje možností.
Řešení
Existuje celkem 15 možností.
Matematická úloha – Kuličky různých barev

209. Dělitelnost pěti

Zapište zlomkem v základním tvaru pravděpodobnost, že náhodné dvojciferné číslo:
a)   je dělitelné pěti,
b)   není dělitelné pěti.
Řešení
a)   p1 = 1/5
b)   p2 = 4/5
Matematická úloha – Dělitelnost pěti

210. Házení kostkou

Zapište zlomkem v základním tvaru, jaká je pravděpodobnost, že při hodu kostkou:
a)   padne číslo větší než 4,
b)   nepadne číslo větší než 4.
Řešení
a)   p1 = 1/3
b)   p2 = 2/3
Matematická úloha – Házení kostkou

211. Určete číslo

Určete číslo, kterým musíme vynásobit výraz , abychom jako výsledek získali číslo 12.
Řešení
Hledané číslo je 8.
Matematická úloha – Určete číslo

212. Část celku

Je dáno, že celku je 32.

Určete, kolik je celku.
Řešení
x = 63
Matematická úloha – Část celku

213. Peníze v pokladničce

Karel má v pokladničce celkem 19 mincí, a to pouze desetikorunové a padesátikorunové mince. Celkem má v pokladničce naspořeno 830 Kč.

O každém z následujících tvrzení rozhodněte, jestli je pravdivé či nikoliv.
a)   V pokladničce chybí 170 Kč do tisíce.
b)   V pokladničce je méně desetikorun než padesátikorun.
c)   V pokladničce je o 13 padesátikorun více než desetikorun.
d)   V pokladničce je stejný počet desetikorun a padesátikorun.
e)   V pokladničce jsou desetikoruny a padesátikoruny v poměru 3 : 16 (v tomto pořadí).
Řešení
a)   0
b)   0
c)   0
d)   1
e)   0
Matematická úloha – Peníze v pokladničce

214. Vnitřní úhly v trojúhelníku

Velikosti vnitřních úhlů α, β, γ trojúhelníku jsou v poměru 3:4:5.

Vypočítejte
a)   úhel α,
b)   úhel β,
c)   úhel γ.
Řešení
a)   α = 45 °
b)   β = 60 °
c)   γ = 75 °
Matematická úloha – Vnitřní úhly v trojúhelníku

215. Ninini sourozenci

Nina má dva malé sourozence, čtyřicetiměsíční Aničku a sedmiměsíčního Káju.

Vypočtěte,
a)   za kolik měsíců bude Anička čtyřikrát starší než Kája,
b)   věkový rozdíl mezi Ninou a Aničkou, pokud Nina před čtyřmi měsíci slavila šesté narozeniny. Výsledek uveďte v měsících.
Řešení
a)   Anička bude 4krát starší za 4 měsíce.
b)   Terezka je starší o 36 měsíců.
Matematická úloha – Ninini sourozenci

216. Lepenkové krabice

Uzavřená krabice má tvar kolmého hranolu s podstavou rovnostranného trojúhelníku. Hrana podstavy je 24 cm dlouhá, výška krabice je 0,50 m.

Vypočítejte, kolik metrů čtverečních lepenky je třeba na zhotovení 20 takových krabic. (Výsledek zapište zaokrouhlený na 2 desetinná místa.)
Řešení
S = 8,20 m2
Matematická úloha – Lepenkové krabice

217. Uskladněné brambory

Firma má dva sklady brambor. V prvním skladu je třikrát více brambor než ve druhém. Z prvního skladu byla odvezena polovina zde uskladněného množství brambor a zbylo v něm o 90 tun brambor více než ve druhém skladu.

Vypočtěte,
a)   kolik tun brambor má firma uskladněno v druhém skladu brambor,
b)   kolik tun brambor bylo odvezeno z prvního skladu.
Řešení
a)   Ve druhém skladu je 180 tun brambor.
b)   Z prvního skladu bylo odvezeno 270 tun brambor.
Matematická úloha – Uskladněné brambory

218. Kamarádky na cvičení

Kamarádky Pavla, Petra a Sára si šly zacvičit. Celkem cvičily 360 minut. Pavla cvičila trojnásobek času oproti každé ze svých dvou kamarádek. Petra a Sára cvičily stejný čas.

a)   Určete, v jakém poměru jsou časy cvičení všech tří kamarádek v pořadí Pavla, Petra a Sára.
b)   Vypočtěte, kolik minut cvičila Pavla.
Řešení
a)   Poměr časů je 3:1:1.
b)   Pavla cvičila 216 minut.
Matematická úloha – Kamarádky na cvičení

219. Práce v dílnách

4 dělníci vyrobí za 8 dní 960 výrobků.

Vypočtěte, kolik dělníků vyrobí za 9 dní 2 430 výrobků.
Řešení
Je to 9 dělníků.
Matematická úloha – Práce v dílnách

220. Výroba součástek

Denní normovaný výkon pracovníka předpokládá vyrobení 530 součástek stejného druhu. Skutečný výkon pracovníka byl 702 součástek.

Vypočtěte, na kolik procent pracovník splnil plán.
Řešení
Pracovník splnil plán na 135 %.
Matematická úloha – Výroba součástek