Úlohy: 61–80 / 100

61. Student u zkoušky

Při zkoušce si student náhodně vylosuje tři otázky ze 30 možných. K úspěšnému složení zkoušky musí všechny tři otázky správně zodpovědět. Student umí 70 % otázek.

Vypočtěte, jaká je pravděpodobnost, že student u zkoušky uspěje.
Řešení
Pravděpodobnost je 32,76 %.

62. První stupeň školy

Ve škole je na 1. stupni p prvňáků. Druháků je o 18 % méně než prvňáků. Třeťáků je o 7 více než druháků a čtvrťáků je dvakrát více než prvňáků a druháků dohromady.

Vyjádřete výrazem počet žáků na 1. stupni a výraz zjednodušte.
Řešení
Na prvním stupni je 6.28p+7 žáků.

63. Zvýšení platu

Plat pracovníka byl zvýšen o 8 % nyní je 14 580 Kč.

Vypočítejte, kolik Kč byl původní plat.
Řešení
Původní plat byl 13 500 Kč.

64. Palačinky

Palačinku si můžete dát s malinovou, jahodovou, nebo jablečnou náplní. Můžete si ji dát bez polevy, s karamelovou, nebo čokoládovou polevu. Také si můžete nebo nemusíte dát na palačinku šlehačku.

Vypočtěte, kolika různými způsoby je možné si dát palačinku.
Řešení
Palačinku si můžete dát 18 různými způsoby.

65. Výrobní linky

V továrně se vyrábí 35 % výrobků na výrobní lince A, která vyrábí zmetky s pravděpodobností a 65 % výrobků na výrobní lince B, kde je pravděpodobnost zmetků .

Vypočtěte, jaká je pravděpodobnost, že náhodně vybraný výrobek bude vadný?
Řešení
Pravděpodobnost zmetku je 2,65 %.

66. Účet v bance

Na účtu v bance bylo 6 600 Kč, za což byl na konci roku připsán úrok 330

Vypočtěte, kolik procent byla úroková míra.
Řešení
Úroková míra byla 5 %.

67. Místa v divadle

Patrik, Pavel, Alena a Renata šli do divadla.

Vypočtěte, kolika různými způsoby se mohou rozesadit na čtyři sedadla, pokud Renata chce sedět vedle Pavla?
Řešení
Můžou se rozesadit 12 způsoby.

68. V divadle

V divadle je 60 % dospělých a zbytek dětí. Z dospělých je žen a 18 mužů.

Vypočtěte, kolik dětí je v divadle.
Řešení
V divadle je 20 dětí.

69. Zahradnické sázení

Zahradnice měly zasadit 200 sazenic. Lenka zasadila o 20 % více než Dana. Eva zasadila o 40 více než Dana. Zuzka zasadila toho co Dana.

Vypočtěte, kolik sazenic zasadila Dana.
Řešení
Dana zasadila 40 sazenic.

70. Cesty mezi obcemi

Z obce A do obce B vede 5 silnic, z obce B do obce C vedou 2 silnice a z obce C do obce D vedou 3 silnice.

Vypočtěte, kolika různými způsoby se lze dostat z obce A do obce D.
Řešení
Z obce A do obce D se lze dostat 30 různými způsoby.

71. Brankářská výbava

Hokejový brankář si pořizuje výbavu. Vybírá si jednu ze dvou přileb, jedny z tří lapaček, jednu ze čtyř vyrážeček a jednu ze dvou hokejek.

Vypočtěte, kolik existuje variant brankářské výbavy.
Řešení
Existuje 48 variant brankářské výbavy.

72. Pravidelný šestiúhelník

Je dán pravidelný šestiúhelník ABCDEF.

Určete velikost úhlu AFC.
Řešení
Velikost úhlu AFC = 60 °

73. Děti na houpačce

Na houpačce, kterou je páka se dvěma rameny, sedí dvě děti. Houpačka je v rovnováze. Na levé straně sedí 150 cm od středu dítě s hmotností 30 kg a na pravé dítě s hmotností 20 kg.

Vypočtěte, kolik centimetrů od středu sedí dítě na pravé straně.
Řešení
Dítě na pravé straně sedí 225 cm od středu houpačky.

74. Zlevnění a zdražení notebooku

Notebook před byl zdražen o 15 % a nyní ho doprodávají za 13 800 Kč, což je 80 % zdražené ceny.

Vypočtěte, jaká byla původní cena notebooku před zdražením.
Řešení
Cena notebooku před zdražením byla 15 000 Kč.

75. Kuželovitá střecha

Střecha věže má tvar pláště rotačního kužele o průměru podstavy 4,3 m. Odchylka strany od roviny podstavy je 36 °.

Vypočtěte v m2 spotřebu plechu na pokrytí střechy, počítáme-li 8 % na odpad. (Výsledek zapište na dvě desetinná místa.)
Řešení
Spotřeba plechu je 19,39 m2

76. Těžiště trojúhelníku

Přímka p prochází těžištěm T trojúhelníku a je rovnoběžná s úsečkou BC.

Vypočtěte poměr obsahu rozdělené menší části trojúhelníku přímkou ​​p a obsahu trojúhelníku.
Řešení
Poměr je 4:9.

77. Tříciferná čísla

a)   Vypočtěte, kolik je tříciferných čísel, která mají ciferný součet 6?
b)   Určete v základním tvaru poměr počtu takto vytvořených sudých a lichých čísel.
Řešení
a)   Počet čísel je 21.
b)   Poměr sudých a lichých čísel je 4:3.

78. Spropitné

V gastronomickém zařízení se vždy na konci dne provádí inventura v pokladně, aby si mohli zaměstnanci rozdělit spropitné. Zjistilo se, že denní spropitné se řídí normálním rozdělením se střední hodnotou 130 € a směrodatnou odchylkou 60.

Vypočtěte, jaká je pravděpodobnost, že v náhodně vybraný den bude spropitné více než 160 €.
Řešení
p = 30,85 %

79. Pastelky

V penálu je 5 pastelek: modrá, žlutá, zelená, červená a fialová.

Vypočtěte,
a)   kolik je různých možností uložení v penálu,
b)   kolik je různých možností uložení v penálu za předpokladu, že modrá a žlutá musí být (v tomto pořadí) vždy vedle sebe.
Řešení
a)   Je 120 možností.
b)   Je 24 možností.

80. Povinné minimální rezervy

Vypočtěte jaké minimální množství peněz musí banka držet v hotovosti z vkladu 5 500 €, jestliže úroveň povinných minimálních rezerv je 2,15 %. (Výsledek zapište na dvě desetinná místa.)
Řešení
Povinné minimální rezervy činí 118,25 €.