Úlohy: 21–40 / 40

12

21. Dětské a volejbalové hřiště

Ve městě se rozhodli, že postaví dětské a volejbalové hřiště. Volejbalové bude mít rozměr 12 m × 18,75 m. Dětská hřiště bude mít tvář čtverce. Plocha obou hřišť bude stejná.

Vypočítejte délku strany dětského hřiště.
Řešení
Délka strany dětského hřiště bude 15 m.
Matematická úloha – Dětské a volejbalové hřiště

22. Myšlené přirozené číslo

Určete nejmenší přirozené číslo \( x \) takové, že \( 2x \) je druhá mocnina přirozeného čísla a \( 3x \) je třetí mocnina přirozeného čísla.
Řešení
x = 72
Matematická úloha – Myšlené přirozené číslo

23. Obsah trojúhelníku

Je dán trojúhelník ABC. Jeho obvod je 30 cm, přičemž strana a je o 2 cm delší než strana b a o 5 cm kratší než strana c.

Určete obsah trojúhelníku v cm2 a zaokrouhlete na dvě desetinná místa.
Řešení
Obsah trojúhelníku 26,83 cm2
Matematická úloha – Obsah trojúhelníku

24. Seskok na Zemi a na Měsíci

Za bezpečný seskok je považován takový, při kterém člověk dopadne na zem maximální rychlostí 8 m/s. Zrychlení na Zemi je g = 10 ms-2 a zrychlení na Měsíci je 6krát menší než na Zemi.

Určete v metrech (na jedno desetinné místo) maximální výšku, ze které lze bezpečně skočit na Zemi a na Měsíci.
Řešení
a)   Na Zemi lze bezpečně skočit z výšky 3,20 m,
b)   na Měsíci z výšky 19,20 m.
Matematická úloha – Seskok na Zemi a na Měsíci

25. Úhly v lichoběžníku

O úhlech v lichoběžníku ABCD je známo: velikost úhlu \( \gamma \) je 121 °, velikost úhlu \( \alpha \) je 2/3 úhlu \( \delta \).

Vypočítejte rozdíl úhlů \( \alpha \) a \( \beta \).
Řešení
Rozdíl úhlů \( \alpha \) a \( \beta \) je 13 °.
Matematická úloha – Úhly v lichoběžníku

26. Střední příčka lichoběžníku

Obsah lichoběžníku je 111,80 cm2 a jeho výška 6,50 cm.

Vypočítejte v cm délku střední příčky lichoběžníku.
Řešení
Velikost střední příčky lichoběžníku je 17,20 cm.
Matematická úloha – Střední příčka lichoběžníku

27. Objem kvádru

Kvádr má délku 12 cm, šířku 0,60 dm. Výška má stejnou velikost jako hrana krychle, jejíž objem je 64 cm3.

Vypočítejte objem kvádru v cm3.
Řešení
Objem kvádru je 288 cm3
Matematická úloha – Objem kvádru

28. Válcová nádrž

Nádrž tvaru válce o průměru 100 cm je naplněná z 50 % a je v ní 78 500 l vody.

Vypočítejte, jaká je výška nádrže. (Zaokrouhlete na celé metry.)
Řešení
Výška nádrže je 50 m.
Matematická úloha – Válcová nádrž

29. Objem krabice

Krabice má výšku 55 cm a šířku 40 cm. Objem krabice je 180 litrů.

Vypočtěte
a)   a na dvě desetinná místa zapište, kolik cm měří délka krabice,
b)   kapacitu krabice v cm3.
Řešení
a)   Délka krabice je 81,82 cm.
b)   Objem krabice je 180 000 cm3
Matematická úloha – Objem krabice

30. První stupeň školy

Ve škole je na prvním stupni p prvňáků. Druháků je o 18 % méně než prvňáků. Třeťáků je o 7 více než druháků a čtvrťáků je dvakrát více než prvňáků a druháků dohromady.

Vyjádřete výrazem počet žáků na prvním stupni a výraz zjednodušte.
Řešení
Na prvním stupni je 6.28p+7 žáků.
Matematická úloha – První stupeň školy

31. Těžiště trojúhelníku

V trojúhelníku ABCE prochází přímka p těžištěm T trojúhelníku a je rovnoběžná s úsečkou BC.

Vypočtěte poměr obsahu rozdělené menší části trojúhelníku přímkou ​​p a obsahu trojúhelníku.
Řešení
Poměr je 4:9.
Matematická úloha – Těžiště trojúhelníku

32. Úhlopříčka obrazovky

Úhlopříčka televizní obrazovky je 84 cm a výška je 40 cm.

Vypočtěte šířku obrazovky, zaokrouhlete na dvě desetinná místa.
Řešení
a = 73,86 cm
Matematická úloha – Úhlopříčka obrazovky

33. Zapište výraz

Zapište výraz n, který je:
a)   o 6 větší než dvojnásobek výrazu y,
b)   třikrát menší než čtyřnásobek výrazu y.
Řešení
a)   Výraz je 2y+6.
b)   Výraz je 4y/3.
Matematická úloha – Zapište výraz

34. Objem krychlové nádoby

Nádoba tvaru krychle má bez víka povrch 320 centimetrů2.

Vypočítejte její objem v cm3.
Řešení
Objem nádoby je 512 cm3.
Matematická úloha – Objem krychlové nádoby

35. Obvod obdélníku

Délka obdélníku je , jeho šířka je o kratší než délka.

Vyjádřete obvod obdélníku výrazem.
Řešení
Obvod obdélníku je 2x + 20y – 12 nebo 2(x + 10y – 6).
Matematická úloha – Obvod obdélníku

36. Dvě krabice

Krabice má tvar kvádru o rozměrech 3 cm, 4 cm a 5 cm.

Vypočítejte, kolikrát větší je objem druhé krabice s dvojnásobnými rozměry.
Řešení
Objem druhé krabice je 8krát větší.
Matematická úloha – Dvě krabice

37. Hranol s podstavou kosodélníku

Čtyřboký hranol má objem 720 cm3. Podstavu tvoří kosodélník se stranou dlouhou 16 cm a příslušnou výškou 5 cm.

Vypočítejte výšku hranolu.
Řešení
Výška hranolu je 9 cm.
Matematická úloha – Hranol s podstavou kosodélníku

38. Šířka řeky

Budova vysoká 15 m je vzdálená od břehu řeky 30 m. Ze střechy této budovy je vidět šířku řeky pod úhlem 15 °.

Vypočtěte, kolik metrů je řeka široká.
Řešení
Řeka je široká 43,30 m.
Matematická úloha – Šířka řeky

39. Osm beden

Objem osmi stejných beden tvaru kvádru je 2 560 dm3. Každá bedna má čtvercovou podstavu o délce hrany 8 dm.

Vypočtěte, jaká je výška jedné bedny.
Řešení
Výška jedné bedny je 5 dm
Matematická úloha – Osm beden

40. Voda v akváriu

V akváriu o rozměrech dna 30 × 20 cm a výšce 25 cm jsme jsou 3 litry vody.

Vypočtěte, v jaké výšce je hladina.
Řešení
Hladina je ve výšce 5 cm.
Matematická úloha – Voda v akváriu
 
12