Úlohy: 1–20 / 40

12

1. Výška kvádru

Kvádr s rozměry dolní podstavy 45 cm a 10 cm má stejný objem jako krychle s hranou 30 cm³

Vypočítejte výšku kvádru.
Řešení
Výška kvádru je 60 cm.
Matematická úloha – Výška kvádru

2. Hloubka bazénu

Bazén s rozměry dna 3 m a 2 m je napuštěn 96 hl vody. Voda dosahuje 20 cm pod okraj bazénu.

Vypočítejte, kolik decimetrů je hloubka bazénu.
Řešení
Hloubka bazénu je 18 dm.
Matematická úloha – Hloubka bazénu

3. Výška vody v bazénu

V bazénu tvaru kvádru o rozměrech dna 12,50 m a 650 cm je 960 hl vody.

Vypočítejte, do jaké výšky v metrech dosahuje hladina vody. (Zaokrouhlete na dvě desetinná místa.)
Řešení
Hladina vody dosahuje výšky 1,18 metru.
Matematická úloha – Výška vody v bazénu

4. Pozemek ve tvaru lichoběžníku

Pozemek má tvar pravoúhlého lichoběžníku se základnami 21 m a 11,20 m. Při ceně 2 500 Kč za metr čtvereční je hodnota pozemku vyčíslena na 1 352 400 korun.

Vypočítejte, kolik metrů pletiva je potřeba k oplocení tohoto pozemku.
Řešení
Pro oplocení tohoto pozemku je potřeba 100,80 metrů pletiva.
Matematická úloha – Pozemek ve tvaru lichoběžníku

5. Poměr stran obdélníku

Obdélník má obvod 30 cm. Poměr délky a šířky je 2:3.

Vypočítejte:
a)   délku obdélníku v cm,
b)   šířku obdélníku v cm,
c)   obsah obdélníku v cm2.
Řešení
a)   Délka obdélníku měří 6 cm.
b)   Délka obdélníku měří 9 cm.
c)   Obsah obdélníku je 54 cm2.
Matematická úloha – Poměr stran obdélníku

6. Trika a sukně

Karolína si koupila 5 trik a 2 mikiny. Jedno triko stálo 250 Kč. Karolína celkem zaplatila 2 210 Kč.

Vypočítejte, kolik Kč stála jedna mikina.
Řešení
Jedna mikina stála 480 Kč.
Matematická úloha – Trika a sukně

7. Výška pravidelného čtyřbokého jehlanu

Pravidelný čtyřboký jehlan má objem 2 160 litrů a délku podstavné hrany 12 dm.

Vypočítejte výšku jehlanu.
Řešení
Výška jehlanu je 45 dm.
Matematická úloha – Výška pravidelného čtyřbokého jehlanu

8. Kužel a válec

Rotační válec má objem 120 dm3. Rotační kužel má stejně velký objem i poloměr podstavy jako rotační válec.

Vypočítejte, o kolik procent je větší výška rotačního kužele než výška rotačního válce.
Řešení
Výška rotačního kužele je větší o 200 %.
Matematická úloha – Kužel a válec

9. Obsah obdélníku

Obsah obdélníku je 81,25 cm2. Zvětšíme-li jeho délku o 5 mm, zvětší se jeho obsah o 4 %.

Určete v milimetrech rozměry obdélníku.
Řešení
Šířka obdélníku je 125 mm, délka obdélníku je 65 mm.
Matematická úloha – Obsah obdélníku

10. Opsaná a vepsaná koule

Krychli o objemu 4 096 cm3 je opsána a vepsána koule.

Vypočítejte, kolikrát je větší objem opsané koule než koule vepsané. (Zaokrouhlete na dvě desetinná místa.)
Řešení
Objem opsané koule je 5,20krát větší než objem koule vepsané.
Matematická úloha – Opsaná a vepsaná koule

11. Úhly v rovnoběžníku

Je dán rovnoběžník ABCD, délka jeho jedné úhlopříčky je rovna délce jeho jedné strany.

Vypočítejte, jakou velikost mají vnitřní úhly rovnoběžníku ABCD.
Řešení
Vnitřní úhly rovnoběžníku ABCD mají velikost 60 ° a 120 °.
Matematická úloha – Úhly v rovnoběžníku

12. Pravidelný čtyřboký jehlan

Objem pravidelného čtyřbokého jehlanu je 288 dm³. Obvod jeho podstavy je stejně velký jako jeho výška.

Vypočítejte v dm² povrch jehlanu. (Výsledek zaokrouhlete na celé dm².)
Řešení
Povrch jehlanu je 326 dm².
Matematická úloha – Pravidelný čtyřboký jehlan

13. Pozemek tvaru lichoběžníku

Pozemek tvaru pravoúhlého lichoběžníku má základny dlouhé 102 m a 86 m. Kolmé rameno má délku 63 m.

Vypočítejte
a)   obsah pozemku,
b)   obvod pozemku.
Řešení
a)   Obsah pozemku je 5 922 m2m
b)   obvod pozemku 316 metrů.
Matematická úloha – Pozemek tvaru lichoběžníku

14. Pravoúhlý trojúhelník

Délky stran pravoúhlého trojúhelníku tvoří první 3 členy aritmetické posloupnosti. Obsah trojúhelníku je 600 cm2.

Určete délky stran trojúhelníku.
Řešení
Délky stran trojúhelníku podle velikosti jsou 30 cm, 40 cm a 50 cm.
Matematická úloha – Pravoúhlý trojúhelník

15. Počet úhlopříček

Určete vztah na výpočet počtu úhlopříček v konvexním n-úhelníku.
Řešení
\[ \frac{n \cdot \left (n-3 \right )}{2} \]
Matematická úloha – Počet úhlopříček

16. Parník a člun

V 6 hodin 30 minut vyplul z přístavu parník plující rychlostí 12 km/hod. Přesně v 10 hodin za ním vyplul motorový člun, který plul konstantní rychlostí 40 km/hod.

Vypočtěte:
a)   v kolik hodin dohonil člun parník,
b)   po kolika kilometrech dohonil člun parník.
Řešení
a)   Člun dohonil parník v 11 hodin
b)   Člun dohonil parník po 60 kilometrech.
Matematická úloha – Parník a člun

17. Strany obdélníku

Jedna strana obdélníku má délku 18 cm. Obvod obdélníku je 48 cm.

Vypočítejte délku druhé strany obdélníku.
Řešení
Druhá strana obdélníku má délku 6 cm.
Matematická úloha – Strany obdélníku

18. Jízda automobilu po okruhu

Automobil projel jeden okruh neznámou stálou rychlostí, další dva stejné okruhy stálou rychlostí 72 km/hod. Celková průměrná rychlost byla 36 km/hod.

Určete v km/h rychlost, kterou automobil projel poprvé okruh.
Řešení
Automobil projel poprvé okruh rychlostí 18 km/hod.
Matematická úloha – Jízda automobilu po okruhu

19. Výroba šroubů

V továrně vyrobí 12 linek dané množství šroubů za 16 dní.

Vypočítejte, o kolik dní se výroba prodlouží, pokud se 4 linky pokazí.
Řešení
Výroba se prodlouží o 8 dní.
Matematická úloha – Výroba šroubů

20. Šestiboký hranol

Kolmý šestiboký hranol byl vytvořen opracováním krychle o hraně délky 8 cm. Podstava hranolu vznikla ze čtvercové stěny původní krychle oddělením 4 shodných pravoúhlých trojúhelníků s odvěsnami délek 3 cm a 4 cm. Výška hranolu je 8 cm.

Vypočítejte objem šestibokého hranolu.
Řešení
Objem šestibokého hranolu je 320 cm3.
Matematická úloha – Šestiboký hranol
 
12