Úlohy: 21–40 / 57

21. Kachličky v koupelně

Podlaha koupelny má tvar obdélníku o rozměrech 2 metry a 2,50 metru. Je v ní vana o rozměrech dna 150 cm a 60 cm. Zbytek podlahy je pokryt krásnými kachličkami.

Vypočtěte, na kolika metrech čtverečních jsou kachličky.
Řešení
Kachličky jsou na ploše 4,10 m2.
Matematická úloha – Kachličky v koupelně

22. Jablka v košíku

V košíku je pět červených jablek průměrné hmotnosti 125 gramů a jedno žluté jablko. Průměrná hmotnost všech jablek v košíku je 120 gramů.

Určete v gramech hmotnost žlutého jablka.
Řešení
Hmotnost žlutého jablka je 95 g.
Matematická úloha – Jablka v košíku

23. Látka na sedačky

Vypočtěte, kolik m2 látky bude potřeba na potažení 12 sedaček tvaru krychle o hraně 40 cm.
Řešení
Bude potřeba 11,52 m2 látky.
Matematická úloha – Látka na sedačky

24. Sestavení krychle

Vypočtěte, z kolika krychlí o hraně 5 cm lze vytvořit krychli o hraně 25 cm.
Řešení
Lze to z 125 krychlí.
Matematická úloha – Sestavení krychle

25. Teploměr během dne

Teploměr ukazoval ráno teplotu -2 °C. Do oběda stoupla teplota o 5 °C. Do půl noci klesla teplota o 13 °C.

Vypočtěte, jakou teplotu ve °C ukazoval teploměr o půlnoci.
Řešení
Teploměr ukazoval teplotu -10 °C.
Matematická úloha – Teploměr během dne

26. Jablka v přepravce

Sadař nasbíral 294 kg jablek a rozdělil je do 42 přepravek.

Vypočtěte, kolik kg jablek bylo v jedné přepravce.
Řešení
V jedné přepravce bylo 7 kg jablek.
Matematická úloha – Jablka v přepravce

27. Plátek masa

Bylo zjištěno, že na jeden kilogram masa je zapotřebí 6,50 kg obilí, 36 kg krmné směsi a 15 m3 vody. Plátek hovězího masa váží v syrovém stavu 45 gramů.

Vypočtěte, kolik jednotlivých surovin bylo třeba na výrobu tohoto masového plátku. (Výsledky zapište zaokrouhlené na dvě desetinná místa.)
a)   Kolik kilogramů obilí,
b)   kolik kilogramů krmné směsi,
c)   kolik hektolitrů vody.
Řešení
a)   Bylo třeba 0,29 kg obilí.
b)   Bylo třeba 1,62 kg krmné směsi.
c)   Bylo třeba 6,75 hl vody.
Matematická úloha – Plátek masa

28. Uskladněné brambory

Firma má dva sklady brambor. V prvním skladu je třikrát více brambor než ve druhém. Z prvního skladu byla odvezena polovina zde uskladněného množství brambor a zbylo v něm o 90 tun brambor více než ve druhém skladu.

Vypočtěte,
a)   kolik tun brambor má firma uskladněno v druhém skladu brambor,
b)   kolik tun brambor bylo odvezeno z prvního skladu.
Řešení
a)   Ve druhém skladu je 180 tun brambor.
b)   Z prvního skladu bylo odvezeno 270 tun brambor.
Matematická úloha – Uskladněné brambory

29. Setkání v polovině cesty

Anička a Katka bydlí v obcích vzdálených od sebe 18 km. Dohodly se, že se setkají přesně v polovině cesty. Anička šla rychlostí 6 km/h. Katka se zdržela a o 30 minut později vyrazila na kole.

Vypočtěte, jakou rychlostí musí jet Katka, aby na místo setkání došla ve stejný čas jako Anička.
Řešení
Katka musí jet rychlostí 9 km/h.
Matematická úloha – Setkání v polovině cesty

30. Objem krychlové nádoby

Nádoba tvaru krychle má bez víka povrch 320 centimetrů2.

Vypočítejte její objem v cm3.
Řešení
Objem nádoby je 512 cm3.
Matematická úloha – Objem krychlové nádoby

31. Voda v akváriu

Akvárium má rozměry podstavy 80 cm a 45 cm a je v něm 72 litrů vody.

Vypočtěte v cm, do jaké výšky sahá hladina vody v akváriu.
Řešení
Voda sahá do výšky 20 cm.
Matematická úloha – Voda v akváriu

32. Kamarádky na cvičení

Kamarádky Pavla, Petra a Sára si šly zacvičit. Celkem cvičily 360 minut. Pavla cvičila trojnásobek času oproti každé ze svých dvou kamarádek. Petra a Sára cvičily stejný čas.

a)   Určete, v jakém poměru jsou časy cvičení všech tří kamarádek v pořadí Pavla, Petra a Sára.
b)   Vypočtěte, kolik minut cvičila Pavla.
Řešení
a)   Poměr časů je 3:1:1.
b)   Pavla cvičila 216 minut.
Matematická úloha – Kamarádky na cvičení

33. Přeprava autobusy

První den bylo třeba přepravit 240 lidí, dvěma autobusy trvala přeprava 30 minut.

Vypočtěte, kolik minut trvala přeprava druhý den, jestliže bylo třeba přepravit 660 lidí a byly nasazeny tři autobusy?
Řešení
Přeprava trvala 55 minut.
Matematická úloha – Přeprava autobusy

34. Směs bonbónů

Kilogram jahodových bonbónů stojí 160 Kč, kilogram malinových bonbónů stojí 200 Kč/kg. Cukrář má připravit 20 kg směsi v ceně 190 Kč/kg. Cena směsi se stanovuje podle poměru, v jakém se bonbóny míchají.

Vypočtěte:
a)   kolik kilogramů malinových bonbónů bude ve směsi.
b)   cenu jednoho kilogramu takto namíchané směsi, pokud malinové bonbóny zdraží o 20 Kč/kg.
Řešení
a)   Ve směsi bude 15 kg malinových bonbónů.
b)   Cena směsi bude 205 Kč/kg.
Matematická úloha – Směs bonbónů

35. Povrch a objem krychle

Krychle má povrch 486 dm2.

Vypočtěte v dm3 objem této krychle.
Řešení
V = 729 dm3
Matematická úloha – Povrch a objem krychle

36. Dva parníky

Dva parníky vyrazili na plavbu ze stejného přístavu první parník se do přístavu vrací každý čtvrtý den a druhý parník se vrací každý pátý den.

Vypočtěte, za kolik dní se parníky opět potkají.
Řešení
Parníky se opět potkají za 20 dnů.
Matematická úloha – Dva parníky

37. Objem kvádrů

Vypočítejte objem kvádrů v jednotce uvedené v závorce.
a)   a = 20 cm, b = 3 cm, c = 7 cm, [dl]
b)   a = 10 mm, b = 8 mm, c = 9 mm, [ml]
c)   a = 30 cm, b = 5 cm, c = 8 cm, [litry]
d)   a = 300 mm, b = 4 m, c = 7 dm, [hl]
Řešení
a)   Objem kvádru je 4,20 dl
b)   Objem kvádru je 0,72 ml
c)   Objem kvádru je 1,20 litrů
d)   Objem kvádru je 8,40 hl
Matematická úloha – Objem kvádrů

38. Kameninové dlaždice

Kameninová dlaždice má rozměry 20 cm, 20 cm, 2 cm. Balík, ve kterém je 10 kusů dlaždic, má hmotnost 20 kg.

Vpočtěte hustotu kameniny, ze které jsou dlaždice zhotoveny.
Řešení
Hustota kameniny je 2 500 kg/m3.
Matematická úloha – Kameninové dlaždice

39. Hustota asfaltu

Sud naplněný asfaltem má průměr 60 cm a výšku 100 cm. Hmotnost asfaltu v něm je 390 kg.

Vypočtěte hustotu asfaltu v .
Řešení
Hustota asfaltu je 1 379,86 kg/m3.
Matematická úloha – Hustota asfaltu

40. Nádrž auta

V nádrži automobilu je 9,40 litru benzinu, což představuje 20 % objemu nádrže.

Vypočtěte, jaký je objem nádrže automobilu.
Řešení
Objem nádrže automobilu je 47 litrů.
Matematická úloha – Nádrž auta