Úlohy: 1–20 / 22

12

1. Definiční obor funkcí 2

Určete definiční obory \( D_f \) následujících funkcí:
a)   \[ f(x) = \frac{1}{x^2 - 4} \]
b)   \[ g(x) = \sqrt{x^2 - 9} \]
c)   \[ h(x) = \ln(2x - 1) \]
d)   \[ k(x) = \frac{\sqrt{5 - x}}{x + 3} \]
e)   \[ m(x) = \sqrt{x + \ln(x)} \]
f)   \[ n(x) = \frac{\ln(x - 1)}{x^2 - 4x + 3} \]
Řešení
a)   \( D_f = (-\infty, -2) \cup (-2, 2) \cup (2, \infty) \)
b)   \( D_g = (-\infty, -3\rangle \cup \langle 3, \infty) \)
c)   \( D_h = \langle \frac{1}{2}, \infty) \)
d)   \( D_k = (-\infty, -3) \cup (-3, 5\rangle \)
e)   \( D_m = (0, \infty) \)
f)   \( D_f = (1, 3) \cup (3, \infty) \)
Matematická úloha – Definiční obor funkcí 2

2. Derivace složených funkcí

Určete derivace následujících funkcí:
a)   \( f_1(x) = \sin(3x^2) \)
b)   \( f_2(x) = \ln(\cos(x^2)) \)
c)   \( f_3(x) = e^{x^3} \)
d)   \( f_4(x) = \sqrt{2x^5 + 1} \)
e)   \( f_5(x) = \tan(\ln(x)) \)
f)   \( f_6(x) = \frac{1}{x^2 + e^{2x}} \)
g)   \( f_7(x) = \sin(\sqrt{x}) \)
h)   \( f_8(x) = \frac{\ln(x)}{x^3} \)
Řešení
a)   \[ f_1'(x) = \cos(3x^2) \cdot 6x \]
b)   \[ f_2'(x) = -2x \cdot \tan(x^2)\]
c)   \[ f_3'(x) = e^{x^3} \cdot 3x^2 \]
d)   \[ f_4'(x) = \frac{5x^4}{\sqrt{2x^5 + 1}} \]
e)   \[ f_5'(x) = \frac{1}{x \cdot \cos^2(\ln(x))} \]
f)   \[ f_6'(x) = -\frac{2x + 2e^{2x}}{(x^2 + e^{2x})^2} \]
g)   \[ f_7'(x) = \frac{\cos(\sqrt{x})}{2\sqrt{x}} \]
h)   \[ f_8'(x) = \frac{1 - 3\ln(x)}{x^4} \]
Matematická úloha – Derivace složených funkcí

3. Derivace polynomů

Určete derivace funkcí:
a)   \( f_1(x) = 3x^4 - 5x^3 + 2x^2 - x + 7 \)
b)   \( f_2(x) = -2x^5 + 4x^4 - x^3 + 6x^2 - 3x \)
c)   \( f_3(x) = 5x^3 - 7x^2 + x - 8 \)
d)   \( f_4(x) = -x^5 + 3x^4 - 2x^2 + x - 4 \)
e)   \( f_5(x) = 6x^4 - 5x^3 + 4x - 9 \)
f)   \( f_6(x) = -4x^5 + x^3 - 3x^2 + 7x \)
g)   \( f_7(x) = 3x^4 - x^2 + 2x - 1 \)
h)   \( f_8(x) = 5x^5 - 3x^4 + x^2 - 6 \)
Řešení
a)   \( f'_1(x) = 12x^3 - 15x^2 + 4x - 1 \)
b)   \( f'_2(x) = -10x^4 + 16x^3 - 3x^2 + 12x - 3 \)
c)   \( f'_3(x) = 15x^2 - 14x + 1 \)
d)   \( f'_4(x) = -5x^4 + 12x^3 - 4x + 1 \)
e)   \( f'_5(x) = 24x^3 - 15x^2 + 4 \)
f)   \( f'_6(x) = -20x^4 + 3x^2 - 6x + 7 \)
g)   \( f'_7(x) = 12x^3 - 2x + 2 \)
h)   \( f'_8(x) = 25x^4 - 12x^3 + 2x \)
Matematická úloha – Derivace polynomů

4. Průsečík lineárních funkcí

Určete průsečík grafů lineárních funkcí:
a)   \( f_1(x) = 4x - 3 \), \( f_2(x) = -x + 2 \)
b)   \( f_1(x) = 4x - 1 \), \( f_2(x) = 2x + 5 \)
c)   \( f_1(x) = 3x + 2 \), \( f_2(x) = 3x + 5 \)
d)   \( f_1(x) = -x + 4 \), \( f_2(x) = 2x - 2 \)
e)   \( f_1(x) = -10x - 14 \), \( f_2(x) = -10x - 14 \)
f)   \( f_1(x) = x - 3 \), \( f_2(x) = -2x + 1 \)
g)   \( f_1(x) = -3x + 6 \), \( f_2(x) = x + 2 \)
h)   \( f_1(x) = 2x - 4 \), \( f_2(x) = -x + 5 \)
Řešení
a)   [1, 1]
b)   [3, 11]
c)   nemá řešení
d)   [2, 2]
e)   nekonečně mnoho řešení
f)   [ \(\frac{4}{3}\), \(-\frac{5}{3}\) ]
g)   [1, 3]
h)   [3, 2]
Matematická úloha – Průsečík lineárních funkcí

5. Průsečíky s osami

Vypočítejte průsečíky s osou \(x\) a osou \(y\) u grafů následujících funkcí.
a)   \( y = 2x - 6 \)
b)   \( y = -3x + 9 \)
c)   \( y = \frac{1}{2}x - 4 \)
d)   \( y = -5x + 15 \)
e)   \( y = 4x + 8 \)
f)   \( y = 7x \)
g)   \( y = 5 \)
h)   \( y = -2x + 10 \)
Řešení
a)   \( P_x = [3, 0]; P_y = [0, -6]; \)
b)   \( P_x = [3, 0]; P_y = [0, 9]; \)
c)   \( P_x = [8, 0]; P_y = [0, -4]; \)
d)   \( P_x = [3, 0]; P_y = [0, 15]; \)
e)   \( P_x = [-2, 0]; P_y = [0, 8]; \)
f)   \( P_x = [0, 0]; P_y = [0, 0]; \)
g)   \( P_{x} \text{ neexistuje}; P_y = [0, 5]; \)
h)   \( P_x = [5, 0]; P_y = [0, 10]; \)
Matematická úloha – Průsečíky s osami

6. Hodnota výrazu

Vypočítej hodnotu výrazu y = 3x22x + 3 pro:
a)   x = -2,
b)   x = 1,
c)   x = 0,
d)   x = 0,50.
Řešení
a)   19
b)   -2
c)   3
d)   2,75
Matematická úloha – Hodnota výrazu

7. Definiční obor funkcí 1

Určete definiční obory \( D_f \) následujících funkcí:
a)   \[ f(x) = \frac{1}{x - 2} \]
b)   \[ g(x) = \sqrt{5 - x} \]
c)   \[ h(x) = \ln(x + 3) \]
d)   \[ k(x) = \frac{\sqrt{x + 1}}{x - 4} \]
e)   \[ m(x) = \sqrt{3x + 9} \]
f)   \[ n(x) = \frac{\ln(x)}{x^2 - 1} \]
Řešení
a)   \[ D_f = (-\infty, 2) \cup (2, \infty).\]
b)   \[ D_g = (-\infty, 5\rangle.\]
c)   \[ D_h = (-3, \infty).\]
d)   \[ D_k = \langle -1, 4) \cup (4, \infty).\]
e)   \[ D_m = \langle -3, \infty).\]
f)   \[ D_n = (0, 1) \cup (1, \infty).\]
Matematická úloha – Definiční obor funkcí 1

8. Grafy lineárních funkcí

Jsou dány grafy lineárních funkcí.

Určete zpaměti funkční předpis.
a)    Graf lineární funkce
b)    Graf lineární funkce
c)    Graf lineární funkce
d)    Graf lineární funkce
Řešení
a)   
b)   
c)   
d)   
Matematická úloha – Grafy lineárních funkcí

9. Grafy lineárních funkcí

Jsou dány grafy lineárních funkcí.

Určete zpaměti funkční předpis.
a)    Graf lineární funkce
b)    Graf lineární funkce
c)    Graf lineární funkce
d)    Graf lineární funkce
Řešení
a)   
b)   
c)   
d)   
Matematická úloha – Grafy lineárních funkcí

10. Průběh funkce

Je dána funkce

Určete:
a)   definiční obor funkce f,
b)   obor hodnot funkce f,
c)   průsečík grafu funkce f s osou y (pokud existuje),
d)   průsečíky grafu funkce f s osou x (pokud existují),
e)   zda je funkce f sudá nebo lichá,
f)   zda je funkce f periodická,
g)   zda je funkce f prostá,
h)   zda je funkce f ohraničená zdola nebo shora,
i)   intervaly spojitosti funkce f,
j)   první derivaci funkce,
k)   druhou derivaci funkce,
l)   stacionární body,
m)   lokální extrémy funkce,
n)   v kterých intervalech funkce f roste,
o)   v kterých intervalech funkce f klesá,
p)   inflexní body,
q)   intervaly konvexnosti funkce,
r)   intervaly konkávnosti funkce,
s)   asymptoty funkce (pokud existují),
t)   limity na hranicích definičního oboru,
u)   načrtněte graf funkce.
Řešení
a)   Definiční obor
b)   Obor hodnot
c)   Průsečík s osou y je .
d)   Průsečíky s osou x jsou , .
e)   Funkce f není ani sudá ani lichá.
f)   Funkce f není periodická.
g)   Funkce f není prostá.
h)   Funkce f není ohraničená zdola nebo shora.
i)   Intervaly spojitosti funkce f jsou , , .
j)   
k)   
l)   Funkce f nemá stacionární body.
m)   Funkce f nemá lokální extrémy.
n)   Funkce f není rostoucí na žádném intervalu.
o)   Funkce f je klesající na intervalech , , .
p)   Inflexní bod funkce f je .
q)   Funkce f je konvexní na intervalech .
r)   Funkce f je konkávní na intervalech .
s)   Asymptoty funkce f jsou , a .
t)   Limity na hranicích def. oboru jsou
, , , , , .
u)    Vyšetřování průběhu funkce
Matematická úloha – Průběh funkce

11. Lineární funkce s absolutní hodnotou

Narýsujte graf funkce:
a)   \[y=\left |x+1\right |+\left |x-1\right |+\left |5-x\right |-8 \]
b)   \[y=\left |1-3 x\right |-\left |3 x+2\right |-\left |5-2 x\right |+6 \]
c)   \[y=\left |1+\frac{x}{2}\right |-\left |x\right |-\left |1-\frac{2x}{3}\right |+2 \]
Řešení
a)    Lineární funkce s absolutní hodnotou
b)    Lineární funkce s absolutní hodnotou
c)    Lineární funkce s absolutní hodnotou
Matematická úloha – Lineární funkce s absolutní hodnotou

12. Kvadratické funkce s absolutní hodnotou

Načrtněte graf funkce:
a)   
b)   
c)   
Řešení
a)    Kvadratické funkce s absolutní hodnotou
b)    Kvadratické funkce s absolutní hodnotou
c)    Kvadratické funkce s absolutní hodnotou
Matematická úloha – Kvadratické funkce s absolutní hodnotou

13. Kvadratické funkce s absolutní hodnotou

Narýsujte graf funkce:
a)   
b)   
c)   
Řešení
a)    Kvadratické funkce s absolutní hodnotou
b)    Kvadratické funkce s absolutní hodnotou
c)    Kvadratické funkce s absolutní hodnotou
Matematická úloha – Kvadratické funkce s absolutní hodnotou

14. Lineární funkce s absolutní hodnotou

Narýsujte graf funkce:
a)   
b)   
c)   
d)   
Řešení
a)    Lineární funkce s absolutní hodnotou
b)    Lineární funkce s absolutní hodnotou
c)    Lineární funkce s absolutní hodnotou
d)    Lineární funkce s absolutní hodnotou
Matematická úloha – Lineární funkce s absolutní hodnotou

15. Funkce s absolutní hodnotou

Narýsujte graf funkce.
a)   
b)   
c)   
d)   
Řešení
a)    Funkce s absolutní hodnotou
b)    Funkce s absolutní hodnotou
c)    Funkce s absolutní hodnotou
d)    Funkce s absolutní hodnotou
Matematická úloha – Funkce s absolutní hodnotou

16. Rovnice lineární funkce

Jsou dány dva body.

Určete rovnici lineární funkce procházející těmito body.
a)   A[–2;–5], B[2;1]
b)   A[–4;1], B[3;1]
c)   A[–3;6], B[6;3]
d)   A[–1;4], B[2;7]
e)   A[–1;–7], B[4;3]
f)   A[–1;–2], B[–1;0]
g)   A[-3;6], B[0;3]
h)   A[–1;–3], B[2;6]
Řešení
a)   
b)   
c)   
d)   
e)   
f)   nemá řešení
g)   
h)   
Matematická úloha – Rovnice lineární funkce

17. Vlastnosti funkce

Je dána funkce f:

Určete:
a)   definiční obor funkce f
b)   obor hodnot funkce f
c)   průsečík grafu funkce f s osou y (pokud existuje)
d)   průsečíky grafu funkce f s osou x (pokud existují)
e)   zda je funkce f sudá nebo lichá
f)   v kterých intervalech funkce f roste
g)   v kterých intervalech funkce f klesá
h)   zda je funkce f prostá
i)   inverzní funkci k funkci f
j)   načrtněte graf funkce
Řešení
a)   Definiční obor funkce je
b)   Obor hodnot funkce je
c)   Průsečík s osou y je
d)   Průsečík s osou x je
e)   Funkce f není ani sudá ani lichá
f)   Funkce f je rostoucí v intervalu
g)   Funkce f není klesající.
h)   Funkce f je prostá.
i)   Inverzní funkce k funkci f je
j)    Graf funkce
Matematická úloha – Vlastnosti funkce

18. Vlastnosti funkce

Je dána funkce f:

Určete:
a)   definiční obor funkce f
b)   obor hodnot funkce f
c)   průsečík grafu funkce f s osou y (pokud existuje)
d)   průsečíky grafu funkce f s osou x (pokud existují)
e)   zda je funkce f sudá nebo lichá
f)   v kterých intervalech funkce f roste
g)   v kterých intervalech funkce f klesá
h)   zda je funkce f prostá
i)   inverzní funkci k funkci f
j)   načrtněte graf funkce
Řešení
a)   Definiční obor funkce je
b)   Obor hodnot funkce je
c)   Průsečík s osou y je
d)   Průsečík s osou x je
e)   Funkce f není ani sudá ani lichá
f)   Funkce f je rostoucí v intervalu
g)   Funkce f není klesající.
h)   Funkce f je prostá.
i)   Inverzní funkce k funkci f je
j)    Graf funkce
Matematická úloha – Vlastnosti funkce

19. Body kvadratické funkce

Je dána funkce g: \( y = x^2 - 4x + 3 \).

Určete všechna reálná čísla x tak, aby platilo g(x) = g(-2).
Řešení
x = –2 a x = 6
Matematická úloha – Body kvadratické funkce

20. Graf lineární funkce

Načrtněte graf funkce
a)   
b)   
c)   
d)   
Řešení
a)    Lineární funkce
b)    Lineární funkce
c)    Lineární funkce
d)    Lineární funkce
Matematická úloha – Graf lineární funkce
 
12