Úlohy: 21–30 / 30

12

21. V divadle

V divadle je 60 % dospělých a zbytek dětí. Z dospělých je žen a 18 mužů.

Vypočtěte, kolik dětí je v divadle.
Řešení
V divadle je 20 dětí.
Matematická úloha – V divadle

22. Zahradnické sázení

Zahradnice měly zasadit 200 sazenic. Lenka zasadila o 20 % více než Dana. Eva zasadila o 40 více než Dana. Zuzka zasadila toho co Dana.

Vypočtěte, kolik sazenic zasadila Dana.
Řešení
Dana zasadila 40 sazenic.
Matematická úloha – Zahradnické sázení

23. Dvě části cesty

Cesta má dvě části v celkové délce 190 metrů. Delší část cesty je o 10 metrů kratší než trojnásobek délky kratší části cesty.

Rozhodněte o každém z následujících tvrzení, zda je pravdivé, či nikoli.
a)   Delší část cesty má délku 140 metrů.
b)   Délky obou částí cesty jsou v poměru 1 : 3.
c)   Delší část cesty je o 90 metrů delší než kratší část.
Řešení
a)   1
b)   0
c)   1
Matematická úloha – Dvě části cesty

24. Dělení bonbónů

Jana, Martina a Zuzka si rozdělily bonbóny v poměru 3:7:5 . Martina dostala o 9 bonbonů méně než měly Jana a Zuzka spolu.

U každého z následujících tvrzení rozhodněte, zda je pravdivé, či nikoliv.
a)   Martina dostala méně bonbonů než Zuzka.
b)   Všechny spolu dostaly 135 bonbonů.
c)   Martina dostala o 16 bonbonů více než Zuzka.
d)   Zuzka dostala nejvíce bonbonů.
Řešení
a)   0
b)   1
c)   0
d)   0
Matematická úloha – Dělení bonbónů

25. Peníze v pokladničce

Karel má v pokladničce celkem 19 mincí, a to pouze desetikorunové a padesátikorunové mince. Celkem má v pokladničce naspořeno 830 Kč.

O každém z následujících tvrzení rozhodněte, jestli je pravdivé či nikoliv.
a)   V pokladničce chybí 170 Kč do tisíce.
b)   V pokladničce je méně desetikorun než padesátikorun.
c)   V pokladničce je o 13 padesátikorun více než desetikorun.
d)   V pokladničce je stejný počet desetikorun a padesátikorun.
e)   V pokladničce jsou desetikoruny a padesátikoruny v poměru 3 : 16 (v tomto pořadí).
Řešení
a)   0
b)   0
c)   0
d)   1
e)   0
Matematická úloha – Peníze v pokladničce

26. Uskladněné brambory

Firma má dva sklady brambor. V prvním skladu je třikrát více brambor než ve druhém. Z prvního skladu byla odvezena polovina zde uskladněného množství brambor a zbylo v něm o 90 tun brambor více než ve druhém skladu.

Vypočtěte,
a)   kolik tun brambor má firma uskladněno v druhém skladu brambor,
b)   kolik tun brambor bylo odvezeno z prvního skladu.
Řešení
a)   Ve druhém skladu je 180 tun brambor.
b)   Z prvního skladu bylo odvezeno 270 tun brambor.
Matematická úloha – Uskladněné brambory

27. Kamarádky na cvičení

Kamarádky Pavla, Petra a Sára si šly zacvičit. Celkem cvičily 360 minut. Pavla cvičila trojnásobek času oproti každé ze svých dvou kamarádek. Petra a Sára cvičily stejný čas.

a)   Určete, v jakém poměru jsou časy cvičení všech tří kamarádek v pořadí Pavla, Petra a Sára.
b)   Vypočtěte, kolik minut cvičila Pavla.
Řešení
a)   Poměr časů je 3:1:1.
b)   Pavla cvičila 216 minut.
Matematická úloha – Kamarádky na cvičení

28. Směs bonbónů

Kilogram jahodových bonbónů stojí 160 Kč, kilogram malinových bonbónů stojí 200 Kč/kg. Cukrář má připravit 20 kg směsi v ceně 190 Kč/kg. Cena směsi se stanovuje podle poměru, v jakém se bonbóny míchají.

Vypočtěte:
a)   kolik kilogramů malinových bonbónů bude ve směsi.
b)   cenu jednoho kilogramu takto namíchané směsi, pokud malinové bonbóny zdraží o 20 Kč/kg.
Řešení
a)   Ve směsi bude 15 kg malinových bonbónů.
b)   Cena směsi bude 205 Kč/kg.
Matematická úloha – Směs bonbónů

29. Loďka v řece

Loďka se pohybuje po proudu řeky rychlostí v1= 5 a proti proudu v2= 2 .

Vypočtěte rychlost proudu řeky a rychlost loďky vzhledem k vodě.
Řešení
a)   Rychlost proudu řeky je 1,50 km/h
b)   rychlost loďky vzhledem k vodě 3,50 km/h.
Matematická úloha – Loďka v řece

30. Vnitřní úhly v trojúhelníku

V trojúhelníku ABC je velikost vnitřního úhlu \( \beta \) o 10 stupňů větší než velikost úhlu \( \alpha \) a velikost úhlu \( \gamma \) je 3× větší než velikost úhlu \( \beta \).

Určete velikost úhlů:
a)   \( \alpha \)
b)   \( \beta \)
c)   \( \gamma \)
Řešení
a)   Velikost úhlu \( \alpha \) je 28 °,
b)   velikost úhlu \( \beta \) je 38 °,
c)   velikost úhlu \( \gamma \) je 114 °.
Matematická úloha – Vnitřní úhly v trojúhelníku
 
12