Úlohy: 1–5 / 5

1

1. Goniometrické rovnice 1

Vyřešte goniometrické rovnice:
a)   \[\sin x = \frac{1}{2}\]
b)   \[\cos x = -\frac{\sqrt{2}}{2}\]
c)   \[\tan x = \sqrt{3}\]
d)   \[\sin^2 x = \frac{3}{4}\]
e)   \[\cos 2x = 0\]
f)   \[\tan^2 x = 3\]
Řešení
a)   \[x = \frac{\pi}{6} + 2k\pi \lor x = \frac{5\pi}{6} + 2k\pi, k \in \mathbb{Z}\]
b)   \[x = \frac{3\pi}{4} + 2k\pi \lor x = \frac{5\pi}{4} + 2k\pi, k \in \mathbb{Z}\]
c)   \[x = \frac{\pi}{3} + k\pi, k \in \mathbb{Z}\]
d)   \[x = \frac{\pi}{3} + 2k\pi \lor x = \frac{2\pi}{3} + 2k\pi \lor x = \frac{4\pi}{3} + 2k\pi \lor x = \frac{5\pi}{3} + 2k\pi, k \in \mathbb{Z}\]
e)   \[x = \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{Z}\]
f)   \[x = \frac{\pi}{3} + k\pi \lor x = -\frac{\pi}{3} + k\pi, k \in \mathbb{Z}\]

2. Výška komína

Ze vzdálenosti 36 metrů od paty komína je vidět jeho vršek pod úhlem 53º.

Vypočítejte v metrech výšku komína. Zaokrouhlete na jedno desetinné místo.
Řešení
Výška komína je 47,80 m.

3. Sinus a cosinus úhlů

Vypočítejte zpaměti sin a cos uvedených úhlů:
a)   
b)   
c)   
d)   
Řešení
a)   
b)   
c)   
d)   

4. Řeka viditelná z rozhledny

Z rozhledny, která je 15 m vysoká a od řeky vzdálená 30 m, vidíme řeku pod výškovým úhlem 15 °.

Vypočtěte šířku řeky v metrech a zapište na jedno desetinné místo.
Řešení
Řeka je široká 43,30 metrů.

5. Šířka řeky

Budova vysoká 15 m je vzdálená od břehu řeky 30 m. Ze střechy této budovy je vidět šířku řeky pod úhlem 15 °.

Vypočtěte, kolik metrů je řeka široká.
Řešení
Řeka je široká 43,30 m.
 
1