Úlohy: 21–40 / 50

21. Symetrické číslo

Je dáno číslo 346

Doplňte k danému číslu zepředu a zezadu co nejmenší počet cifer tak, aby vzniklo symetrické číslo dělitelné 5
Řešení
Vzniklé číslo je 5 643 465.
Matematická úloha – Symetrické číslo

22. Nehodící se číslo

Jsou dána čísla 22, 368, 400, 602, 699, 978, 12 334.

Určete, které z těchto čísel nepatří mezi ostatní.
Řešení
Mezi ostatní nepatří číslo 699.
Matematická úloha – Nehodící se číslo

23. Pěticiferná čísla

Jsou dané cifry 0, 1, 3, 4, 7.

Určete počet všech přirozených pěticiferných čísel, v nichž je každá z číslic alespoň jednou obsažena.
Řešení
Jde o 96 čísel.
Matematická úloha – Pěticiferná čísla

24. Počet čísel

Určete počet všech přirozených čísel větších než 2 000 , ve kterých se vyskytují číslice 1, 2, 4, 6, 8, a to každá nejvíce jednou.
Řešení
216
Matematická úloha – Počet čísel

25. Počet přirozených čísel

Určete počet všech přirozených čísel větších než 200, ve kterých se vyskytují číslice 1, 2, 4, 6, 8, a to každá nejvíce jednou.
Řešení
288
Matematická úloha – Počet přirozených čísel

26. Ovocné cesty

Z Ananasovic do Banánovic vede 5 cest, z Banánovic do Citrónovic vedou 3 cesty a z Citrónovic do Datlovic vedou 4 cesty.

Vypočítejte počet různých cest, které vedou z Ananasovic do Datlovic přes Banánovice a Citrónovice.
Řešení
Ananasovic do Datlovic lze jít 60 různými cestami.
Matematická úloha – Ovocné cesty

27. Číslo do 50000

Učitel napsal na tabuli číslo menší než 50 000.

První žák řekl: "Toto číslo je dělitelné 2."

Druhý žák řekl: "Toto číslo je dělitelné 3."

A tak dále, až po posledního, který tvrdil, že je dělitelné 13. Jeden žák ale lhal.

Vypočítejte, jaké číslo učitel napsal.
Řešení
Učitel napsal číslo 25 740.
Matematická úloha – Číslo do 50000

28. Číselná osa

Je dána číselná osa a na ní jsou vyznačena čísla 258 a 326.

Vypočítejte, které číslo leží na číselné ose přesně ve středu mezi těmito čísly.
Řešení
Ve středu mezi zadanými čísly leží číslo 292.
Matematická úloha – Číselná osa

29. Líný Honza

Líný Honza leží za pecí. Z boku na bok se otočí pravidelně každých 18 minut, protáhne se každých 40 minut. Za pecí už leží 150 hodin.

Vypočtěte, kolikrát se za tu dobu stalo, že se v jednu chvíli otočil z boku na bok i se protáhnul.
Řešení
Tato situace nastala 25krát.
Matematická úloha – Líný Honza

30. Tělesné výchova

V hodině tělesné výchovy žáci nastupovali do dvojstupů, trojstupů, čtyřstupů, šestistupů a osmistupů, vždy však zbýval jeden žák.

Vypočtěte, kolik žáků cvičilo, bylo-li jich méně než 30.
Řešení
Cvičilo 25 žáků.
Matematická úloha – Tělesné výchova

31. Cesty mezi obcemi

Z obce A do obce B vede 5 silnic, z obce B do obce C vedou 2 silnice a z obce C do obce D vedou 3 silnice.

Vypočtěte, kolika různými způsoby se lze dostat z obce A do obce D.
Řešení
Z obce A do obce D se lze dostat 30 různými způsoby.
Matematická úloha – Cesty mezi obcemi

32. Sladkosti v cukrárně

V cukrárně mají 10 druhů zákusků, 8 druhů zmrzliny a 3 druhy kávy.

Vypočtěte, kolik možností je na výběr, chceme-li si dát:
a)   jeden z nabízených druhů zboží,
b)   jeden zákusek a jeden kopeček zmrzliny,
c)   jeden zákusek, jeden kopeček zmrzliny a jednu kávu,
d)   dva různé kopečky zmrzliny.
Řešení
a)   Je 21 možností.
b)   Je 80 možností.
c)   Je 240 možností.
d)   Je 56 možností.
Matematická úloha – Sladkosti v cukrárně

33. Brankářská výbava

Hokejový brankář si pořizuje výbavu. Vybírá si jednu ze dvou přileb, jedny z tří lapaček, jednu ze čtyř vyrážeček a jednu ze dvou hokejek.

Vypočtěte, kolik existuje variant brankářské výbavy.
Řešení
Existuje 48 variant brankářské výbavy.
Matematická úloha – Brankářská výbava

34. Řezání tyčí

Tři tyče o délkách 24 dm, 3 m a 160 cm mají být rozřezány na stejně dlouhé části tak, aby byly co nejdelší.

Vypočtěte, kolik cm měří jedna část.
Řešení
Jedna část měří 20 cm.
Matematická úloha – Řezání tyčí

35. Součet prvočísel

Vypočtěte součet všech prvočísel větších než 10 a menších než 20.
Řešení
Součet je 60.
Matematická úloha – Součet prvočísel

36. Tříciferná čísla

a)   Vypočtěte, kolik je tříciferných čísel, která mají ciferný součet 6?
b)   Určete v základním tvaru poměr počtu takto vytvořených sudých a lichých čísel.
Řešení
a)   Počet čísel je 21.
b)   Poměr sudých a lichých čísel je 4:3.
Matematická úloha – Tříciferná čísla

37. Dvě čísla

Čísla A a B se liší o 95. Pokud od čísla A odečteme jeho dvě třetiny, dostaneme stejný výsledek, jako když k číslu B přičteme jeho tři pětiny.

a)   Větší ze dvou čísel je sudé a menší ze dvou čísel je liché.
b)   Oba získané výsledky jsou rovny číslu 40.
c)   Menší číslo je čtvrtinou čísla většího.
Řešení
a)   1
b)   1
c)   0
Matematická úloha – Dvě čísla

38. Čtyřciferná čísla

Z číslic 1, 2, 4 a 8 sestavte dvě čtyřciferná čísla tak, aby v zápise každého čísla byly použity všechny 4 číslice.

Vypočtěte rozdíl takového největšího sudého a nejmenšího lichého čísla (v tomto pořadí).
Řešení
Rozdíl čísel je 5 931.
Matematická úloha – Čtyřciferná čísla

39. Nejvyšší kladné dvojciferné číslo

Určete největší kladné dvojciferné číslo, jehož největší společný dělitel s číslem 51 je číslo 17.
Řešení
Je to číslo 85.
Matematická úloha – Nejvyšší kladné dvojciferné číslo

40. Vlastnosti čísla

Určete číslo, které je dělitelné šesti a sedmi a zároveň je větší než 79 a menší než 91
Řešení
Je to číslo 84.
Matematická úloha – Vlastnosti čísla