Úlohy: 1–8 / 8

1

1. Hodnost matic 2

Určete hodnost následujících matic:
a)   \[ A = \begin{pmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 3 & 6 & 9 \end{pmatrix} \]
b)   \[ B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{pmatrix} \]
c)   \[ C = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 0 & -2 \\ 4 & -3 & 6 \end{pmatrix} \]
d)   \[ D = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 4 & 5 & 6 \end{pmatrix} \]
e)   \[ E = \begin{pmatrix} 3 & 6 & 9 \\ 1 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix} \]
f)   \[ F = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \]
Řešení
a)   \( \text{hodnost}(A) = 1 \)
b)   \( \text{hodnost}(B) = 3 \)
c)   \( \text{hodnost}(C) = 3 \)
d)   \( \text{hodnost}(D) = 2 \)
e)   \( \text{hodnost}(E) = 1 \)
f)   \( \text{hodnost}(F) = 3 \)
Matematická úloha – Hodnost matic 2

2. Determinant matic

Určete determinant matic převodem na trojúhelníkový tvar:
a)   \[ A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 0 & -2 \\ 4 & -3 & 6 \end{pmatrix} \]
b)   \[ B = \begin{pmatrix} 3 & 1 & -2 \\ 0 & 4 & 1 \\ 2 & -3 & 5 \end{pmatrix} \]
c)   \[ C = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{pmatrix} \]
d)   \[ D = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 5 & -1 \\ 4 & 7 & 3 \end{pmatrix} \]
e)   \[ E = \begin{pmatrix} 6 & 2 & -1 \\ 0 & 5 & 3 \\ 1 & 4 & 2 \end{pmatrix} \]
f)   \[ F = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 4 & -1 \\ 5 & -2 & 0 \end{pmatrix} \]
Řešení
a)   \( \text{det}(A) = 7 \)
b)   \( \text{det}(B) = 63 \)
c)   \( \text{det}(C) = -3 \)
d)   \( \text{det}(D) = 10 \)
e)   \( \text{det}(E) = 12 \)
f)   \( \text{det}(F) = -54 \)
Matematická úloha – Determinant matic

3. Sarrusovo pravidlo

Vypočítejte determinant pomocí Sarrusova pravidla:
a)   \[ \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} \]
b)   \[ \begin{vmatrix} 2 & 1 & 3 \\ 1 & 4 & 2 \\3 & 5 & 6 \end{vmatrix}\]
c)   \[ \begin{vmatrix} 3 & 0 & 1 \\ 2 & 4 & 5 \\ 1 & 3 & 2 \end{vmatrix}\]
d)   \[ \begin{vmatrix}1 & 3 & 5 \\2 & 1 & 4 \\3 & 2 & 1\end{vmatrix}\]
e)   \[ \begin{vmatrix} 5 & 2 & 0 \\ 1 & 3 & 2 \\ 4 & 1 & 3\end{vmatrix}\]
f)   \[\begin{vmatrix}1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{vmatrix}\]
Řešení
a)   \( 0 \)
b)   \( 7 \)
c)   \( -19 \)
d)   \( 28 \)
e)   \( 45 \)
f)   \( 1 \)
Matematická úloha – Sarrusovo pravidlo

4. Determinant matice

Spočítejte determinant matice:
a)   \[ A = \begin{pmatrix} 2 & 3 & 1 \\ 4 & 1 & -2 \\ 3 & 0 & 5 \end{pmatrix} \]
b)   \[ B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 0 & 1 \end{pmatrix} \]
Řešení
a)   \( \text{det}(A) = -71 \)
b)   \( \text{det}(B) = 26 \)
Matematická úloha – Determinant matice

5. Soustavy rovnic Gaussovou eliminací

Pomocí Gaussovy eliminace řešte soustavy rovnic:
a)   \[ \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 3 \\ 3 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix} \]
b)   \[ \begin{pmatrix} 2 & 3 & 1 \\ 4 & 7 & 3 \\ 6 & 9 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} \]
c)   \[ \begin{pmatrix} 1 & -1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 7 \\ 1 \end{pmatrix} \]
d)   \[ \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \\ 15 \end{pmatrix} \]
Řešení
a)   \( x_1 = 1 \), \( x_2 = -1 \), \( x_3 = 1 \)
b)   \( x_1 = -1 \), \( x_2 = 0 \), \( x_3 = 1 \)
c)   \( x_1 = 1 \), \( x_2 = 1 \), \( x_3 = 2 \)
d)   Nemá řešení.
Matematická úloha – Soustavy rovnic Gaussovou eliminací

6. Determinant matic

Určete determinant matice:
a)   \[ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \]
b)   \[ \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 0 \\ 4 & 1 & 2 \end{pmatrix} \]
c)   \[ \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 4 & 6 \end{pmatrix} \]
d)   \[ \begin{pmatrix} 3 & 1 & 2 \\ 1 & 4 & 5 \\ 6 & 2 & 1 \end{pmatrix} \]
e)   \[ \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 4 \\ 3 & 5 & 6 \end{pmatrix} \]
f)   \[ \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 4 \end{pmatrix} \]
Řešení
a)   0
b)   3
c)   0
d)   -33
e)   16
f)   0
Matematická úloha – Determinant matic

7. Řešení soustavy Gaussovou eliminací

Je dána soustava rovnic o 4 neznámých

\[ \begin{aligned} 3x_1 + 2x_2 - x_3 + 4x_4 &= 10 \\ x_1 - x_2 + 2x_3 - 3x_4 &= -5 \\ 4x_1 + 3x_2 + x_3 - x_4 &= 12 \\ 2x_1 + x_2 + 3x_3 + 2x_4 &= 7 \end{aligned} \]

Ověřte Frobeniovu podmínku a soustavu vyřešte pomocí Gaussovy eliminační metody.
Řešení
\( x_1 = 2 \), \( x_2 = -1 \), \( x_3 = 3 \), \( x_4 = -2 \)
Matematická úloha – Řešení soustavy Gaussovou eliminací

8. Hodnost matic 1

Určete hodnost následujících matic:
a)   \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \]
b)   \[ B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
c)   \[ C = \begin{pmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 3 & 6 & 9 \end{pmatrix} \]
d)   \[ D = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix} \]
e)   \[ E = \begin{pmatrix} 0 & 2 & 4 \\ 1 & 0 & 3 \\ 5 & 6 & 0 \end{pmatrix} \]
f)   \[ F = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5 & 7 \\ 0 & 1 & 3 \end{pmatrix} \]
Řešení
a)   Hodnost 2, matice je singulární.
b)   Hodnost 3, matice je regulární.
c)   Hodnost 1, matice je singulární.
d)   Hodnost 3, matice je regulární.
e)   Hodnost 3, matice je regulární.
f)   Hodnost 2, matice je singulární.
Matematická úloha – Hodnost matic 1
 
1