Úlohy: 1–7 / 7

1

1. Průsečík lineárních funkcí

Určete průsečík grafů lineárních funkcí:
a)   \( f_1(x) = 4x - 3 \), \( f_2(x) = -x + 2 \)
b)   \( f_1(x) = 4x - 1 \), \( f_2(x) = 2x + 5 \)
c)   \( f_1(x) = 3x + 2 \), \( f_2(x) = 3x + 5 \)
d)   \( f_1(x) = -x + 4 \), \( f_2(x) = 2x - 2 \)
e)   \( f_1(x) = -10x - 14 \), \( f_2(x) = -10x - 14 \)
f)   \( f_1(x) = x - 3 \), \( f_2(x) = -2x + 1 \)
g)   \( f_1(x) = -3x + 6 \), \( f_2(x) = x + 2 \)
h)   \( f_1(x) = 2x - 4 \), \( f_2(x) = -x + 5 \)
Řešení
a)   [1, 1]
b)   [3, 11]
c)   nemá řešení
d)   [2, 2]
e)   nekonečně mnoho řešení
f)   [ \(\frac{4}{3}\), \(-\frac{5}{3}\) ]
g)   [1, 3]
h)   [3, 2]
Matematická úloha – Průsečík lineárních funkcí

2. Průsečíky s osami

Vypočítejte průsečíky s osou \(x\) a osou \(y\) u grafů následujících funkcí.
a)   \( y = 2x - 6 \)
b)   \( y = -3x + 9 \)
c)   \( y = \frac{1}{2}x - 4 \)
d)   \( y = -5x + 15 \)
e)   \( y = 4x + 8 \)
f)   \( y = 7x \)
g)   \( y = 5 \)
h)   \( y = -2x + 10 \)
Řešení
a)   \( P_x = [3, 0]; P_y = [0, -6]; \)
b)   \( P_x = [3, 0]; P_y = [0, 9]; \)
c)   \( P_x = [8, 0]; P_y = [0, -4]; \)
d)   \( P_x = [3, 0]; P_y = [0, 15]; \)
e)   \( P_x = [-2, 0]; P_y = [0, 8]; \)
f)   \( P_x = [0, 0]; P_y = [0, 0]; \)
g)   \( P_{x} \text{ neexistuje}; P_y = [0, 5]; \)
h)   \( P_x = [5, 0]; P_y = [0, 10]; \)
Matematická úloha – Průsečíky s osami

3. Grafy lineárních funkcí

Jsou dány grafy lineárních funkcí.

Určete zpaměti funkční předpis.
a)    Graf lineární funkce
b)    Graf lineární funkce
c)    Graf lineární funkce
d)    Graf lineární funkce
Řešení
a)   
b)   
c)   
d)   
Matematická úloha – Grafy lineárních funkcí

4. Grafy lineárních funkcí

Jsou dány grafy lineárních funkcí.

Určete zpaměti funkční předpis.
a)    Graf lineární funkce
b)    Graf lineární funkce
c)    Graf lineární funkce
d)    Graf lineární funkce
Řešení
a)   
b)   
c)   
d)   
Matematická úloha – Grafy lineárních funkcí

5. Rovnice lineární funkce

Jsou dány dva body.

Určete rovnici lineární funkce procházející těmito body.
a)   A[–2;–5], B[2;1]
b)   A[–4;1], B[3;1]
c)   A[–3;6], B[6;3]
d)   A[–1;4], B[2;7]
e)   A[–1;–7], B[4;3]
f)   A[–1;–2], B[–1;0]
g)   A[-3;6], B[0;3]
h)   A[–1;–3], B[2;6]
Řešení
a)   
b)   
c)   
d)   
e)   
f)   nemá řešení
g)   
h)   
Matematická úloha – Rovnice lineární funkce

6. Graf lineární funkce

Načrtněte graf funkce
a)   
b)   
c)   
d)   
Řešení
a)    Lineární funkce
b)    Lineární funkce
c)    Lineární funkce
d)    Lineární funkce
Matematická úloha – Graf lineární funkce

7. Karta do posilovny

Vstupenka do posilovny stojí 100 Kč za 90 minut. Se slevovou kartou zaplatí návštěvník za stejný čas 50 Kč. Cena slevové karty je 300 Kč.

Vypočítejte, po kolika návštěvách posilovny zaplatí návštěvník bez slevové karty stejně jako návštěvník, který si kartu zakoupil.
Řešení
Návštěvník bez slevové karty zaplatí stejně jako návštěvník se slevovou kartou po 6 návštěvách.
Matematická úloha – Karta do posilovny
 
1